If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2-18r+9=0
a = 5; b = -18; c = +9;
Δ = b2-4ac
Δ = -182-4·5·9
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-12}{2*5}=\frac{6}{10} =3/5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+12}{2*5}=\frac{30}{10} =3 $
| (x+1)(x–3)=0. | | -11.86-1.4t=-14.96-0.8t+13.96 | | x+4x+115+90=360 | | (3/2)^x=4/9 | | 4x+2x*2+2x*2=360 | | 4p+-5p=-8 | | f-13=11 | | 4(2x+4)-3=9x+10 | | 12x+6=12x+18 | | 4x-95+6x=105 | | 9.08-3x=6.1 | | -9b^2+26b-16=0 | | 10x^2+8=3 | | 1/2a=1/4 | | (12-8+6)2-9=x | | 11.86-1.4t=-14.96-0.8t+13.96 | | (12-8+6)2-9=c | | 20w-20=5w+20+17w | | 9q+12=11q-20 | | 5z=-8+4z | | 3x–11+5x=10x+3 | | -8w^2+30w+8=0 | | 2=y=7 | | y*1=0 | | -3x+11x-70=58 | | x+30+44=89 | | 3x+13x-3=4(4x+9) | | -13.5-18.8r=-14.3 | | 2c^2+12c+10=0 | | 13j-20=16j+20+20 | | 432=9(5x-7) | | 196=110-x |